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…the world is changing…
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information and decision science (IDS) lab
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The overarching goal of the IDS Lab is to enhance understanding of 
complex cyber-physical systems (CPS) and establish rigorous theories 
and algorithms for making CPS able to realize how to improve their 
performance over time while interacting with their environment. 
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information and decision science (IDS) lab
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my dissertation

…Why we cannot achieve the mpg posted on the window sticker…?
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how engines are optimized today
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learning individual driver’s driving style[1]

1. Malikopoulos, A.A. Real-Time, Self-Learning Identification and Stochastic Optimal Control of Advanced Powertrain 
Systems, ProQuest, September 2011. 

2. Malikopoulos, A.A., Papalambros, P.Y., and Assanis, D.N., “Online Self-Learning Identification and Stochastic Control for 
Autonomous Internal Combustion Engines,” Dyn. Sys., Meas., Control, Vol.132, 2, pp.024504-9, 2010. 

3. Malikopoulos, A.A., “Convergence Properties of a Computational Learning Model for Unknown Markov Chains,” Dyn. Sys., 
Meas., Control, Vol.131, 4, pp. 041011-7, 2009. 

4. Malikopoulos, A.A., Papalambros, P.Y., and Assanis, D.N., “A Real-Time Computational Learning Model for Sequential 
Decision-Making Problems Under Uncertainty,” Dyn. Sys., Meas., Control, Vol. 131, 4, pp.041010-8, 2009. 

5. Malikopoulos, A.A., Assanis, D.N., and Papalambros, P.Y., “Real-Time, Self-Learning Optimization of Diesel Engine 
Calibration,” Eng. Gas Turbines Power, Vol. 131, 2, pp. 022803-9, 2009 . 

6. Malikopoulos, A.A., “A Lookahead Control Algorithm for Discrete-Time Stochastic Systems,” Proceedings of the 2010 
ASME Dynamic Systems and Control Conference (DSCC), 2010. 

7. Malikopoulos, A.A., “Convergence Properties of a Computational Learning Model for Unknown Markov Chains,” 
Proceedings of the 2008 ASME Dynamic Systems and Control Conference (DSCC), DSCC2008-2174, 2008. 

8. Malikopoulos, A.A., Assanis, D.N. and Papalambros, P.Y., “Optimal Engine Calibration for Individual Driving Styles,” 
Proceedings of the Society of Automotive Engineers World Congress, SAE 2008-01-1367, 2008. 

9. Malikopoulos, A.A., Papalambros, P.Y. and Assanis, D.N., “A State-Space Representation Model and Learning Algorithm for 
Real-Time Decision-Making Under Uncertainty,” Proceedings of the 2007 ASME International Mechanical Engineering 
Congress and Exposition, IMECE2007-41258, 2007. 

10. Malikopoulos, A.A., Assanis, D.N. and Papalambros, P.Y., “Real-Time, Self-Learning Optimization of Diesel Engine 
Calibration,” Proceedings of the 2007 Technical Conference of the ASME Internal Combustion Engine Division, 
ICEF2007-1603, 2007. 

11. Malikopoulos, A.A., Papalambros, P.Y. and Assanis, D.N., “A Learning Algorithm for Optimal Internal Combustion Engine 
Calibration in Real Time,” Proceedings of the 2007 ASME International Design Engineering Technical Conferences & 
Computers and Information In Engineering Conference, DETC2007/DAC-34718, 2007. 

12. Malikopoulos, A.A., Filipi, Z. and Assanis, D.N., “Simulation of an Integrated Starter Alternator (ISA) for the HMMWV,” 
Proceedings of the Society of Automotive Engineers World Congress, SAE 2006-01-0442, 2006.

values of controllable variables 
(control action, αk)

EngineEngine

DriverDriver

engine output 
(performance criteria, Rk)

engine operating point 
(state, sk)

SelfSelf--LearningLearning
ControllerController

SensorsSensors

values of controllable variables 
(control action, αk)

EngineEngine

DriverDriver

engine output 
(performance criteria, Rk)

engine operating point 
(state, sk)

SelfSelf--LearningLearning
ControllerController

SensorsSensors

12

Fuel economy improvement > 8.7%

[1] Malikopoulos, A.A., Method, Control Apparatus and Powertrain System Controller for Real-Time, Self-Learning Control Based on Individual 
Operating Style, United States Patent, US 8,612,107 B2, December 17, 2013. 

- Toolboxes: Math and Optimization, and Code Generation  
- Simulink real-time simulation and testing, code generation
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moving to Oak Ridge National Lab
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Pareto optimal control strategy
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- Toolboxes: Math and Optimization, and Code Generation  
- Simulink real-time simulation and testing, and Verification, 

Validation, and Test



Pareto optimal control strategy
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Audi’s controller Pareto optimal

Pareto Optimal 

Fuel Economy [MPGe] 35.3

Improvement >12%



Pareto strategy— sustainable buildings
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connected and automated vehicles (CAVs)
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1939: New York  
World’s Fair -  
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1956: GM’s 
future car in 1976



coordination of CAVs
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problem formulation
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problem formulation
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Upper-level problem: Throughput maximization

Low-level problem: Energy minimization



problem formulation
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constrained optimal analytical solution[1],[2]
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discontinuities in the influence functions and Hamiltonian
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upper-level optimal control problem
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existence of time trajectory[1]
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[1] Malikopoulos, A.A., Beaver, L.E., and Chremos, I.V., “Optimal Time Trajectory and Coordination for Connected and Automated Vehicles,” Automatica, 125, 
109469, 2021.



constraints[1] 
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[1] Malikopoulos, A.A., Beaver, L.E., and Chremos, I.V., “Optimal Time Trajectory and Coordination for Connected and Automated Vehicles,” Automatica, 125, 
109469, 2021.



upper-level optimal control problem[1]
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[1] Malikopoulos, A.A., Beaver, L.E., and Chremos, I.V., “Optimal Time Trajectory and Coordination for Connected and Automated Vehicles,” Automatica, 125, 
109469, 2021.



multiple scenarios[1]-[6]
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- Toolboxes: Math and Optimization, Code Generation, and 
Application Deployment  



simulation results
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experimental results in IDS3C
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coordination of CAVs
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ARPAE NEXTCAR —field test in Mcity
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vehicle-in-the-loop test in Bosch facilities
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Improvement on MPGe (%)
Speed Profile

Speed profile 1 Speed profile 2 Speed profile 3

Dyno (Initial SoC) Improvement [%] Improvement [%] Improvement [%]

60% 13.8 33.7 18.7

75% 29.0 17.4 34.2



can we combine both learning and control?
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Supervised learning Model-based control Reinforcement learning



separation of learning and control for CPS[1],[2]
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