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o Learning for Cyber-physical systems (CPS)
o Advanced powertrain systems

o Optimal model-based control for CPS
o (Connected and automated vehicles

o Combining learning and control

o Separated control strategies
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my dissertation

...Why we cannot achieve the posted on the window sticker...?
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learning individual driver’s driving stylel!

engine operating point

(state, s;) (control action, o)
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Sensors

Fuel economy improvement > 8.7%
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moving to Oak Ridge National Lab
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Pareto optimal control strategy
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The Pareto control strategy is the optimal control strategy that

- Toolboxes: Math and Optimization, and Code Generation
- Simulink real-time simulation and testing, and Verification,
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Pareto optimal control strategy
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Pareto strategy — sustainable buildings
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connected and automated vehicles (CAVSs)




1939: New York
World’s Fair -
Futurama

1956: GM’s
future car in 1976
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problem formulation

22



problem formulation

Upper-level problem: Throughput maximization

Entry
of the

control
zone

Low-level problem: En

ergy minimization

T

Exit
of the
control
zone
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problem formulation

o N(t) =1{1,..., N(t)}

f’i = v;(t),

i = uy(t), (1)

$i —S, (vi(t) — vilt)), 1 € N(t),

where p;(t) € P;, vi(t) € Vi, ui(t) € U;, & € [0,1], and t € RT.

@ P;. V; and Y;, i € N(t), are complete and totally bounded
subsets of K.

@ Control and state constraints
Umin S ui(t) S Umazxs a.nd

0 < Vpmin < Vi(t) < Vmaas t € [t2,t]], i € N(t)

(2)

@ To ensure the absence of rear-end collision between two CAVs,
we impose

8i(t) = & - (pi(t) — pi(t)) = 8i(t), t € [t9,¢]), (3)
where §;(t)

distance.

=+ pi - vi(t), is a predefined minimum safe

@ To ensure the absence of lateral collision inside the merging
zone, we impose

si(t) = & - (pr,i — pi(t)) 2 6i(t), t € [t],t]], (4)

where py. ; is the (constant) distance of CAV k from the entry
point that CAV i entered the control zone.

Problem 1

t!

lj'ﬁmda (5)

o, pi(9), t], pi(t)),

Ji(u(t)) =
u(rgg;j‘ (u(t)) =

given t?,

subject to:

@ Dynamics (1)
@ State, control, and safety constraints (2),(3), (4)

@ The augmented Hamiltonian becomes:

H; (ta pi(t), Ug(t),s,-(t),ui(t))
- %’U-i(t)2 RS /\f v (t) + AY - ui(t) + AT - & - (ve(t) — vi(t))

4+ (i) = Umax) + 17 - (Umin — wi(t)) + pf - ua(t)
—pf - wi(t) + - (pi - wi(t) — & (ve(2) — vi(2))).

Optimal solution — none of the constraints is active

wi(t) = ai-t+ei teftltl)

1
l.y*(t) = —Q;* t2 + ¢ t+ dl.’ t e [t()’t.lf]'

2

1 1 -
p’;(f) = g(l,‘ r + 56,‘ % - +di-t+ei te [f?l‘{]

where a;, ¢;, d; and e; are constants of integration.
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constrained optimal analytical solutionl1}.l2]

t.0 t.0 0
o - ® - @'
__Unconstrained arc Unconstrained arc
o
Q! — Constrained arc 1
. 0L
= Constrained arc Constrained arc 2
o5
= [Unconstrained arc 02—
e Unconstrained arc = Unconstrained arc
t.f f f
® 1 ® t'_ ® tt_

(11 Malikopoulos, A.A., Beaver, L.E., and Chremos, I.V., “Optimal Time Trajectory and Coordination for Connected and Automated Vehicles,” Automatica, 125,
109469, 2021.
[21lMahbub, A M. ., and Malikopoulos, A.A., “Conditions to Provable System-Wide Optimal Coordination of Connected and Automated Vehicles,” Automatica,

131, 109751, 2021.
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discontinuities in the influence functions and Hamiltonian

Optimal solution
o Let Ni(t,z(t)) = vi + piv (t) — &ipk(t) + &ipi (), i € N(2).
o Since Nj(t1,z(t1)) = 0, then N;(t1,z(t1)) = 0, hence, the value
of the optimal control at t = t] € [t?, tif ] is given by

A (+TY — ay*(+T
u’;(tf) _ &i(vr (8] )pi v; (¢ ))

@ The interior boundary conditions at the junction point ¢; for
the influence functions are

X (t7) = X (t) + aNi(t(});:i(tl)) = X (¢) + m&,
ON;(ty,x;(t v

a(er) = 2t(eh) + w2 EE) _ yoiy i,

260) = Mp(eh) + m ) ety

@ The Hamiltonian at the junction point ¢; is

ON;(ty, z;(t
Hi(tl_)zH,‘(ti*—)—’lfi (ét:f ( 1))
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upper-level optimal control problem

Pi(t) = dis t2+din-t2+ di1-t+dio, t €[], ¢]],

where ¢; 3, i 2, i1, ¢i0 € R are the constants of integration.

r 1

r T 1 T

Entry Entry Exit Exit
of the of the of the of the
control merging merging control
zone zone ‘ zone zone

A

Time

Position
27



existence of time trajectoryll]

Pi(t) = dis 3+ i t2+ di1-t+ dio, t €[], ¢]],

where ¢; 3, i 2, i1, ¢i0 € R are the constants of integration.

For any fixed p; € [p?, pzf ], the time trajectory ¢, (p}), can be written

(1

as a function of the constants ¢; = (¢ 3, @i.2, ®i.1, Di0)-

@ Hence, in our analysis, we consider the function
fi : ® — [t9,¢/] such that

fi(di) = tp, (p]).

(1 Malikopoulos, A.A., Beaver, L.E., and Chremos, I.V., “Optimal Time Trajectory and Coordination for Connected and Automated Vehicles,” Automatica, 125,
109469, 2021.
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constraints!™]

For each CAV i € N(t), we have the following inequality constraints:

® gzl)(dh) < 0: maximum speed
o giz)(qﬁi) < 0: minimum speed

) (3)(@;) < 0: maximum control input

99 (¢:) < 0: minimum control input
) (5)(@) < 0: rear-end safety constraint
° gi6)(¢z—) < 0: lateral colision constraint

g,§7)(¢z~) < 0: maximum speed at the entry of the merging zone

11 Malikopoulos, A.A., Beaver, L.E., and Chremos, I.V., “Optimal Time Trajectory and Coordination for Connected and Automated Vehicles,” Automatica, 125,
109469, 2021.
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upper-level optimal control problem!l!]

min f;(:)
subject to ¢; € ®;, hgr)(gb,;) =0, r=1,...,5,
gEm)(q’n) <0, m=1,...,7.

Note that the set ®; is determined by the occupancy sets of the lanes,
ie.,

@i ={6:| fi63¢ U 0o},
0€C,,

and can be formed by each i € N(t) at t? by accessing the intersec-
tion’s crossing protocol Z(t).

Proposition 2

The functions f;(¢;), hgr)(qbi),r =1, nn D g,ﬁm)(d)i),m =1,...,7, are
convex.

There is no duality gap in the upper-level problem.

(1 Malikopoulos, A.A., Beaver, L.E., and Chremos, I.V., “Optimal Time Trajectory and Coordination for Connected and Automated Vehicles,” Automatica, 125,
109469, 2021.
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multiple scenarios!!l-6l
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- Toolboxes: Math and Optimization, Code Generation, and
' Application Deployment

[ Mahbub, A M. ., and Malikopoulos, A.A., “A Platoon Formation Framework in a Mixed Traffic Environment,” IEEE Control Systems Letters, 6, 1370-1375, 2022.
(21 Chalaki, B., and Malikopoulos, A.A., “Optimal Control of Connected and Automated Vehicles at Multiple Adjacent Intersections,” IEEE Trans. on Control Systems
Tech., 2021.

(81 Chalaki, B., and Malikopoulos, A.A., “Time-Optimal Coordination for Connected and Automated Vehicles at Adjacent Intersections,” IEEE Trans. Intell. Transp.
Syst., 2021.

4l Kumaravel, S.D., Malikopoulos, A. A., and Ayyagari, R., “Optimal Coordination of Platoons of Connected and Automated Vehicles at Signal-Free Intersections,”
IEEE Trans. Intell. Veh., 2021.

1 Mahbub, A M. 1., Malikopoulos, A.A., and Zhao, L., “Decentralized Optimal Coordination of Connected and Automated Vehicles for Multiple Traffic Scenarios,”
Automatica, 117, 108958, 2020.

61 Malikopoulos, A. A., Hong, S., Park, B., Lee, J., and Ryu, S. “Optimal Control for Speed Harmonization of Automated Vehicles,” IEEE Trans. Intell. Transp. Syst.,
20, 7, 2405-2417, 2019.



simulation results
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coordination of CAVs
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vehicle-in-the-loop test in Bosch facilities

Scenario with human-driven vehicles Scenario with CAVs
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can we combine both learning and control?

o Supervised learning o Model-based control o Reinforcement learning
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separation of learning and control for CPSI2]

l Disturbance l Noise
o + Actual CPS
: . ! ActualCPS | :  output
Control ; Actual CPS — - ) : .
nput | : observation
g +CPS model
: e '+ output
: - CPS model | «
: e ingds J T Observation )
> Delay ,
Control (offline) Learning (onlihe)
Control information |
strategy state )

(11 Malikopoulos, A.A., “Separation of Learning and Control for Cyber-Physical Systems,” Automatica, 2023.
(21 Malikopoulos, A.A., “On Team Decision Problems with Nonclassical Information Structures,” IEEE Transactions on Automatic Control, 2023.
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